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1. INTRODUCTION

Golub and Wilkinson declared in 1976 [1] that, from the standpoint of classical
algebra, the algebraic eigenvalue problem, EVP, has been completely solved, yet,
many existing algorithms cannot handle defective EVPs ef®ciently and they
recommended two methods based on singular value decomposition for the
complete solution of a defective derogatory system. The associated vectors
obtained by the singular decomposition methods cannot produce the Jordan
block structure. Golub would not now stand behind his 1976 statement but
stressed the dif®culty in the numerical solution of the derogatory eigenproblem
[2]. In this letter a new and a much simpler nullspace method to solve the
derogatory system completely is recommended. The associated vectors are
required to be renormalized and to be rearranged in order to produce the ®nal
Jordan canonical form. A detailed numerical example is given.
The eigenvalue problem (EVP) associated with a damped dynamic system is

quadratic: (l2[M]+ l[C]+ [K]){x}={0}. The eigensolutions can be defective,
i.e., there are more eigenvalues than eigenvectors. Symmetric polynomial EVPs
as well as linear non-symmetric EVPs can be defective. There is no ef®cient
algorithm to solve large scale defective EVPs.
The number of equilibrium solutions of a non-linear structure will change

when the determinant of the tangential stiffness matrix equals zero. The
directions of the new equilibrium solutions are determined by the eigenvectors
associated with the tangential stiffness matrix which are called the null space.
The null space can also be defective, i.e., there are more zero eigenvalues than
the eigenvectors and associated (auxiliary, or generalized) vectors are required to
span the null space.
The Jacobian matrix of non-linear aerodynamic ¯utter corresponding to the

onset of a limit cycle constitutes a defective EVP. The exactly defective Jacobian
is obtained by adjusting some parameters, such as speed and ¯ap angle. Once the
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defective EVP is solved, the amplitude and stability of the limit cycle as
functions of speed and ¯ap angle can be studied by the central manifold and
normal form theories [3]. When two or more limit cycles are coincident, a
derogatory EVP results. In control theory, the observability condition requires
the solution of a degenerate EVP. The complete solution of a derogatory EVP is
also useful in the classi®cation of degenerate systems in catastrophe and normal
form theories.
A few common examples of defective engineering systems are given below.

(i) The symmetric complex EVP [4]:

�C�fxg � �fxg where �C� � a c
c b

� �
with (a ± b)2+4c2=0 which has a defective eigensolution at �=(a+ b)/2.

(ii) The generalized EVP associated with positive de®nite damping [5]:

f�xg � 1
�����
15
p

=2�����
15
p

=2 4

" #
f _xg �

1 0

0 9

" #
fxg � f0g

has a two-fold defective eigensolution at l=ÿ2.
(iii) The generalized EVP associated with negative de®nite damping:

f�xg ÿ 1

5

8 9
9 32

� �
f _xg � 1 0

0 16

� �
fxg � f0g

has a four-fold defective eigensolution at l=ÿ2.
The exactly derogatory EVP is dealt with in this note and another report will

be devoted to the perturbed problems similar to reference [6].
After introducing the necessary terminology, the null space method of ®nding

the grade 1 to 4 vectors is outlined. Grade 1 vectors are the eigenvectors and
vectors of higher grades are associated vectors which are required to span the
supplementary space of the eigenvectors. Since the determination of vectors of
grades 1 to 3 differ slightly, they will be considered separately. Vectors of grades
4 and higher are then found routinely. The associated vectors are required to be
renormalized and to be rearranged in order to produce the ®nal Jordan
canonical form. A detailed numerical example is given.

2. DEFINITIONS AND PROPERTIES

The mathematician Jordan [7] must have the full credit of the Jordan form
structure. Sixty years ago, Frazer et al. [8] recognized that, by means of
similarity transformation, a square matrix [A] can be reduced to the simplest
canonical Jordan form [J]. The exact type of the canonical matrix is speci®ed by
means of its Segre characteristic. For example, the Segre characteristic [8] of
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�J� �

a 1
a

a
a 1

a 1
a

b 1
b

g
d

2666666666666664

3777777777777775
is [(213)211]. The three Jordan blocks of the same eigenvalue are bracketed
together to form three blocks. The second block consists of one grade 1 vector
only and the ®rst and third blocks consist of grades 1 and 2 and grades 1, 2 and
3 vectors, respectively. Vectors of grade 1 {x1} correspond to eigenvectors
and vectors of other grades {xi}, i 6� 1, which are not eigenvectors, are obtained
from the sequence: [B]{x1}={0}, [B]{x2}={x1}, [B]{x3}={x2}, etc., where
[B]= [A]ÿ a[I] is the shifted matrix. The vectors thus obtained are called the
associated vectors of eigenvalue a. The associated vectors of block k whose
Jordan block has dimension nk are called the nk vectors of chain k. A much
fuller reference on canonical forms than the famous book by Frazer et al. is
reference [9].
When all eigenvalues are distinct, one has a simple EVP, the Segre

characteristic consists of n ones, where n is the order of the matrix and each
chain consists of one vector which is the eigenvector. Let na eigenvalues be
identically equal to a, or let the algebraic multiplicity of a be na and let ng be the
total number of eigenvectors associated with a or let ng be the geometric
multiplicity of a. Note the fundamental inequality ngE na. There are two
combinational properties of the generalized vectors.
Property (A). If na= ng, one has a semi-simple EVP which has na-multiple

eigenvalues and the same number of eigenvectors. The Segre characteristic
consists of ng ones within brackets. If [X] is the collection of ng eigenvectors, so
is [X][C], where [C] is an arbitrary non-zero constant square matrix of order ng,
because if [B][X]= [0] is true so is [B][X][C]= [0]. That is, all linear combinations
of eigenvectors are also eigenvectors.
Property (B). If there is only one Jordan block corresponding to a, or a is of

block 1, it is necessary that ng=1 with only one eigenvector {x1}. If [X]
=[xi: i=1, . . . , na] are the associated vectors, so are [X][DDD], where the lower
triangular square matrix [DDD] of order na has the form, for example na=3,

�DDD� �
a
b a
c b a

24 35, �1�

in which a 6� 0, b, c are arbitrary constants. It is shown below.

�B�fa x1g � �Aÿ aIfa x1g � f0g,
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�B�fx2 � px1g � fx1g,
or

�B�fax2 � bx1g � fax1g,
where a, b, p are arbitrary numbers and b= ap. Equation (1) is the general form
for three vectors.
When there are ns Jordan blocks associated with a, the geometric multiplicity

ng= ns. Let the Jordan chains be [Xk], k=1, . . . , ns and, as usual, the ®rst
vector of each chain is the eigenvector. Therefore, [Xk][DDDk] is also the
corresponding Jordan chain where [DDDk] is a lower triangular matrix of order nk
in the form (1). Since the linear combinations of the ns eigenvectors are also
eigenvectors, the linear combinations of the ns chains [Xk][DDDk] are also Jordan
chains.

3. GRADE 1 VECTORS

With an accurate eigenvalue a of [A] which has been determined using either
EISPACK [10] or the Lanczos method with inverse iteration improvement [11],
its Segre characteristic and the associated Jordan chains will be found in the
following sections.
The shifted matrix [B]= [A]ÿ a[I] of order n is rank de®cient. The degree of

de®ciency nx can be determined by the method of singular value decomposition
(SVD) [12]. The number of zero (or very small) singular values is equal to the
required nx. The grade 1 vectors, eigenvectors, can be determined by the null
space of [B], from the partitioned equation,

B00 B01

B10 B11

� �
X
I

� �
� �0�, �2�

where [I] is an identity matrix of order nx and [XT, I]T are the required nx
eigenvectors, whose linear combinations are also eigenvectors. If the eigenvectors
are �XT

1 , X
T
2 �T, so are [XT

1 , X
T
2 �T�C�, where [C] is an arbitrary non-singular square

matrix. Let [C]= [X2]
T, one has �XT

1 , X
T
2 �T��C� � ��X1X

ÿ1
2 �T, I� � �XT, I�T,

where X � X1X
ÿ1
2 . Therefore, the form [XT, I]T is always possible. From

equation (2), [X] can be easily solved from

�B00��X� � ÿ�B01� �3�
because the matrix [B00] is well-conditioned and has been decomposed in the
checking of rank de®ciency by SVD. The algorithm requires no knowledge of
other eigensolutions; it is ef®cient.

4. GRADE 2 VECTORS

Because of the structure of [DDD] in equation (1), one can always eliminate the
last nx row of the grade 2 vectors so that the grade 2 vectors are in the form
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[YT, 0T]T, where [0] is a zero matrix of order nx6 ny, in which ny is the number
of the grade 2 vectors to be determined. Since the linear combinations of the
eigenvectors are also eigenvectors, introduce the nx6 ny combination matrix [R]
which is to be determined from the following equation,

B00 B01

B10 B11

� �
Y
0

� �
� Y

I

� �
�R�, �4�

or alternatively,

�B10B
ÿ1
00 Xÿ I��R� � �0� �5�

after solving for [Y] in terms of [X] in the ®rst equation of (4) and substituting
into the second equation. That is, [R] is the null space of the square matrix
equation (5) of order nx. In practice, the matrix [B00] is decomposed in the
checking of rank de®ciency by SVD for grade 1 vectors. Back substitution will
give [Y1]= [B00]

ÿ1[X] and the null space [R] together with its dimension ny of
[B10Y1ÿ I] are determined in exactly the same manner as in equation (2). If
equation (5) has no null space, or the null space is empty, then the whole process
of ®nding associated vectors is halted and one proceeds to section 7 for
renormalization. Finally, [Y]= [Y1][R] gives the ny grade 2 vectors.

5. GRADE 3 VECTORS

Because of the structure of [DDD] in equation (1), one can always eliminate the
last nx rows of the grade 3 vectors so that the grade 3 vectors are in the form
[ZT, 0T]T, where [0] is a zero matrix of order nx6 nz, in which nz is the number
of the grade 3 vectors to be determined. Since the linear combinations of the
grade 1 and 2 vectors are also associated vectors, one can introduce the
(nx+ ny)6 nz combination matrix [S] which is to be determined from the
following equation:

B00 B01

B10 B11

� �
Z
0

� �
� X Y

I 0

� �
�S�, �6�

or alternatively,

�B10B
ÿ1
00 �X, Y� ÿ �I, 0���S� � �0�: �7�

That is, [S] is the null space of the matrix equation (7). In practice, the matrix
[B00] is decomposed in the checking of rank de®ciency by SVD for grade 1
vectors. Back substitution will give [Z1]= [B00]

ÿ1[X, Y] and the null space [S]
together with its dimension nz, of [B10Z1ÿ (I, 0)] are determined in exactly the
same manner as in equation (2). Some of the null vectors in the null space [S] do
not contain any components of [Y] and these null vectors must be disregarded
reducing [S] to [S1], because these null vectors are simply other combinations of
the columns of [X] which do not generate new associated vectors. The number of
new associated vectors nz must be reduced accordingly. If equation (7) has no
null space containing components of [Y], then the whole process of ®nding
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associated vectors is halted and one proceeds to section 7 for renormalization.
Finally, [Z]= [Z1][S1] gives the nz grade 3 vectors.

6. GRADE 4 VECTORS AND VECTORS OF HIGHER GRADES

Because of the structure of [DDD] in equation (1), one can always eliminate the
last nx row of the grade 4 vectors so that the grade 4 vectors are in the form
[WT, 0T]T, where [0] is a null matrix of order nx6 nw, in which nw is the number
of the grade 4 vectors to be determined. Since the linear combinations of the
grades 1, 2 and 3 vectors are also associated vectors, one can introduce the
(nx+ ny+nz)6 nw combination matrix [T] which is to be determined from the
following equation,

B00 B01

B10 B11

� �
W
0

� �
� X Y Z

I 0 0

� �
�T�, �8�

or alternatively,

�B10B
ÿ1
00 �X, Y, Z� ÿ �I, 0, 0���T� � �0�: �9�

That is, [T] is the null space of the matrix equation (9). In practice, the matrix
[B00] is decomposed in the checking of rank de®ciency by SVD. Back
substitution will give [W1]= [B00]

ÿ1[X, Y, Z] and the null space [T] together with
its dimension nw of [B10W1ÿ (I, 0, 0)] are determined in exactly the same manner
as in equation (2). Some of the null vectors in the null space [T] do not contain
any components of [Z] which must be disregarded, thus reducing [T] to [T1],
because these null vectors are alternative combinations of [X, Y] which do not
generate new associated vectors. The number of new associated vectors nw must
be reduced accordingly. If equation (9) has no null space containing components
of [Z], then the whole process of ®nding associated vectors is halted and one can
proceed to section 7 for renormalization. Finally, [W]= [W1][T1] gives the nw
grade 4 vectors.
The process can be augmented to associated vectors of higher grades.

7. RENORMALIZATION OF ASSOCIATED VECTORS

Let

�V� � X Y Z W
I 0 0 0

� �
be the collection of all the computed associated vectors. Instead of the Jordan
canonical form for the zero eigenvalue of [B],

�B��U� � �U��J� �10�
one may just have (since the properties (A) and (B) of section 2 are used
separately one at a time, but not the combination)
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�B��V� � �V��K�, �11�
where the matrix [K] can be determined from a generalized inverse, in the
absence of the right associated vectors, e.g.,

�K� � �VTV�ÿ1�V�T�B��V�: �12�
If there is a transformation matrix [P], such that [U]= [V][P] will transform
equation (11) to (10), then, matrix [P] must satisfy

�K��P� � �P��J� �13�
or, [P] is the associated matrix of the graded vectors. Since the order of [K] is
rather small, one apparent solution is to extract [P] from the null space of [K]p.
Unfortunately, the graded vectors obtained are all unit vectors and the
transformation to Jordan canonical form is not possible.
[P] is obtained by the Gauss elimination method and similarity transformation

in the following manner. Both matrices [K] and [J] are strictly upper triangular
having zero diagonal terms associated with the shifted matrix [B]. The upper
sub-diagonal of matrix [J] has entries one or zero. The strict upper triangle of
[K] contains the same number of ones in the appropriate positions and contains
some additional non-zero numbers which are to be eliminated. Elementary row
operations [Q1] are performed on the augmented matrix [K, I] to eliminate the
unwanted entries of [K], that is,

�Q1��K, I� � �Q1K, Q1� � �L, Q1�, �14�
where [L]= [Q1K] contains no unwanted entries and has the same number as [J]
but in different positions. Then perform the similarity transformation,

�K1� � �Q1KQ
ÿ1
1 �: �15�

Since Q1 contains only a small number of elementary row operations, the
inversion involves the same number of elementary operations. The process is
equivalent to a QR transformation. All the unwanted entries generated by grade
1 vectors are eliminated in [K1]. One can perform the transformation m times,
where m� 1 is the maximum number of grades, then [Km]= [L] which has the
same structure as [J].
The matrix [L] has the same structure as [J] except that the off-diagonal

entries are in different positions. The transformation from [L] to [J] can be
achieved by the permutation matrix [N], so that [N][L][N]ÿ1= [J]. If one wishes
to re-order the diagonal entries of [L] in the sequence {s1, s2, . . . , sm}, where m is
the algebraic multiplicity of a, then, the ith column of the permutation matrix
[N] is given by {esi} which is the sith unit vector. Therefore,

�P� � �Qm��Qmÿ1� . . . �Q2��Q1��N�ÿ1: �16�
Finally the required associated vectors are given by

�U� � �V��P�: �17�
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8. PERTURBATION AND ERROR ANALYSIS

If an EVP is a perturbation of a derogatory EVP, one of the solution methods
is to solve the derogatory EVP completely ®rst and ®nd the perturbed solutions
according to reference [13]. Unfortunately, it is not always possible to ®nd the
derogatory EVP itself. In such a case, one can try to solve the EVP using
EISPACK and check the dependency of the computed eigenvectors associated
with an approximately multiple eigenvalue by SVD similar to the rank
determination to guess the Jordan structure.
The numerical example in the next section is based on exact arithmetics so

that the rank determination by SVD for each group of graded vectors is exact. If
¯oating point arithmetics with ®nite precision is used, the ratios of the singular
values must be checked before replacing the smallest singular values with zeros
for rank determination, according to chapters 2 and 12 of reference [2].
The error analysis is a subject of its own. A more mathematical paper will be

prepared for the full error analysis of the present method based on an extended
matrix formulation [14].

9. NUMERICAL EXAMPLE

Construct [A] from the following matrices,

�J� �

7 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

266666666664

377777777775
and

�U� �

3432 1716 792 330 120 36 8 1
1716 924 462 210 84 28 7 1
792 462 252 126 56 21 6 1
330 210 126 70 35 15 5 1
120 84 56 35 20 10 4 1
36 28 21 15 10 6 3 1
8 7 6 5 4 3 2 1
1 1 1 1 1 1 1 1

266666666664

377777777775
to obtain [A]= [U][J][U]ÿ1=
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ÿ27 673 195 490 ÿ588 314 976 354 ÿ963 056 562 924 ÿ179 720 24 004
ÿ14 505 101 795 ÿ303 926 499 450 ÿ486 458 279 580 ÿ87 164 11 236
ÿ6867 47 739 ÿ140 867 228 018 ÿ217 644 121 590 ÿ36 330 4368
ÿ2820 19 305 ÿ55 840 87 991 ÿ80 850 42 630 ÿ11 550 1140
ÿ929 6167 ÿ17 097 25 319 ÿ21 069 9254 ÿ1582 ÿ58
ÿ200 1207 ÿ2865 3139 ÿ1016 ÿ1049 1078 ÿ290
ÿ3 ÿ60 486 ÿ1455 2277 ÿ2002 946 ÿ186
12 ÿ104 386 ÿ797 991 ÿ744 313 ÿ55

266666666664

377777777775
:

It is interesting to note that [U] is an inverted Pascal triangle whose inverse is
also an integer matrix.
The eigenvalues of [A] are computed using EISPACK and it is found that

there is a six-fold multiple eigenvalue a=1 and the other two eigenvalues are 6
and 7. EISPACK is not able to compute the corresponding associated vectors.
Therefore, section 3 is followed to obtain an unknown number of grade 1
vectors. Form [B]= [A]ÿ a[I] and ®nd, from SVD of [B] that [B] has rank
de®ciency nx=3. The three grade 1 vectors [XT, I]T are obtained from equation
(3), [B00][X]=ÿ[B01], as

�X� �

210 ÿ798 1170
322=3 ÿ392 560
49 ÿ168 231
19 ÿ58 75
17=3 ÿ13 15

266664
377775:

To obtain the unknown number ny of grade 2 vectors, one gets from equation
(5)

�B10B
ÿ1
00 Xÿ I� �

2=75 ÿ3=25 1=5
64=675 ÿ32=75 32=45
98=675 ÿ49=75 49=45

24 35,
whose null space of order ny=2 is

�R� �
ÿ15=2 9=2

0 1
1 0

24 35
and

�Y� �

ÿ553 119
ÿ511=2 329=6
ÿ201=2 43=2
ÿ61=2 13=2
ÿ11=2 7=6

266664
377775,

where the grade 2 associated vectors are [YT, 0T]T.
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To obtain the grade 3 vectors, from equation (7), evaluate

�B10B
ÿ1
00 �X, Y� ÿ �I, 0�� �

2=75 ÿ3=25 1=5 ÿ16=175 3=175
64=675 ÿ32=75 32=45 ÿ111=350 551=9450
98=675 ÿ49=75 49=45 ÿ47=100 227=2700

24 35,
with null space

�S� �

ÿ15=2 1=2 9=2
0 0 1
1 0 1
0 1=3 0
0 1 0

266664
377775:

Since columns 1 and 3 do not have contributions from [Y], they are discarded to
obtain nz=1 and

�Z� �

ÿ266=3
ÿ257=6
ÿ107=6
ÿ35=6
ÿ7=6

266664
377775:

Since EISPACK indicates that there is a six-fold multiple eigenvalue a=1,
and six associated vectors have been found already, one stops. If the multiplicity
is not known beforehand, then one would proceed and stop when nw=0.
Using

�V� � X Y Z
I 0 0

� �

as the associated vectors, it is found from equation (11) that

�K� �

0 0 0 ÿ15=2 9=2 1=2
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1=3
0 0 0 0 0 1
0 0 0 0 0 0

26666664

37777775,

which has four non-zero entries above the ones and has to be eliminated by
renormalization. After elementary row operations according to equation (14) on
the augmented matrix
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�K, I� �

ÿ15
2

9

2

1

2
1

1 1
1 1

1

3
1

1 1
1

2666666666664

3777777777775
,

which produces

1 ÿ9
2

15

2
ÿ1
2

1 1
1 1

1 ÿ1
3

1 1
1

2666666666664

3777777777775
� �L,Q1�,

where the non-zero entries only are shown, one obtains, from equation (15),

�K1� � �Q1KQ
ÿ1
1 � �

0
0 1

0 1
1

3

0
0 1

0

2666666664

3777777775
,

and one now has only one non-zero entry to process.
Again, from equation (14) on the augmented matrix [K1, I], it is found that

�Q2� �

1
1

ÿ1
3

1

1
1

1

2666666664

3777777775
and �K2� � �L� �

0
0 1

0 1
0

0 1
0

26666664

37777775:

If the diagonal sequence of [L] is reordered to {1, 3, 4, 2, 5, 6} using the
permutation matrix [N]= [e1, e3, e4, e2, e5, e6] where {ei} is the ith unit vector,
then one has the canonical Jordan form
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�J� � �N��K2��N�ÿ1 �

0
0 1

0 1
0

0 1
0

26666664

37777775:

Finally the Segre characteristic is [(132)11] for the eigenvalues 1, 6 and 7
respectively.

10. CONCLUSION

A method has been presented to ®nd the associated vectors of a derogatory
EVP of any Jordan canonical when the eigenvalue a is given accurately by using
the null space concept. The associated vectors are required to be renormalized
and rearranged in order to produce the ®nal Jordan canonical form. The matrix
[B]= [A]ÿ a[I] is required to be decomposed only once by SVD.
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